

THE MAGAZINE FOR THE SERIOUS SINCLAIR USER

Upgrade your 16K
 ZX SPECTRUM Now!

The CHEETAH 32K RAMPACK simply plugs into the user port at the rear of your computer and increases the memory instantly to 48K.

* Fully compatible with all accessories via rear edge connector
* No need to open computer and invalidate guarantee
* Why send your computer away and wait weeks for upgrade
* Futly cased tested and guaranteed.

Why wait any longer?

Only $£ 39.95$ including VAT and P\&P.

Now make your

 Spectrum and ZX-81 TalkThe Cheetah "SWEET TALKER" just plugs into the back of the computer using the existing power supply. Based on an allophone system you can easily program any word sentence or phrase. Fully cased, tested guaranteed and compatible with all accessories via rear edge connector. Complete with demonstration cassette and full instructions. No more lonely nights! Simply incredible at $£ \mathbf{2 9 . 7 5}$ (Please quate when ordering whether Spectrum 0 : $\mathrm{Z} \times 81$ owner)

$$
\begin{array}{ll}
16 K \text { RAM Pack for } 2 X-81 & \mathbf{£ 1 9 . 7 5} \\
64 K \text { RAM Pack for } 2 X-81 & \mathbf{£ 4 4 . 7 5}
\end{array}
$$

Prices include VAT, postage \& packing. Delivery normally 14 days. Export orders at no extra cost. Dealer enquiries weicome.

Send cheque/PO now to:
CHEETAH MARKETING LTD
Dept SPJ
24 Ray Street
London EC1 R3 DJ
Tel: 01-278 6954
32K RAM Pack and "SWEET TALKEA" also available from targer Branches of

WH SMITH

FROM THE EDITOR

 UTTING SOUND into programs on the Spectrum is featured in three of our articles this month. The range of noises which can be produced is widened by a sophisticated software solution provided by Robert Stafford. Our consultant editor was impressed by the method adopted to achieve the improvement in Spectrim performance.To overcome the problem of the sound level, Roger Frost found a better method than merely removing the cassettc and ear lead from the player and pressing play or record. He describes his system as reckless but effective and considers it a worthwhile improvement to the working of his Spectrum.

We return to the Sound Generator project we described originally in our issuc of June/July. Many people found difficulty making it work so we gave it to Graham Bradley. He made some adjustments and it now works on both the Spectrum and ZX-81. The results can also be used in place of the Latch Card built in our first issue as a interface for the Prowler robot of our August/September issue. If you prefer hardware solutions to your sound problems this is the article for you.

We also return to the Prowler, with an enhancement for the earlier basic model. David Buckley has added four sensors made from balsa which allow the mobile to deteet obstacles and to take avoiding action. The additions make it similar to other computer-controlled mobiles used in education.
The rest of the projects this month are an improved joystick, a battery-support system and a special case for your Spectrum.

The joystick was built by Brian Lee, who used many old pieces of electrical equipment to make a peripheral which can be used both for the ZX-8I and Spectrum. The total cost is reasonable and has a short stick travel with a positive self-centring effect.

To avoid the annoyance of losing long programs once they have been typed-in because of a power surge, David Buckley has produced a battery-support system. It will allow the Spectrum or ZX-81 to continue working for between 20 minutes and one hour if the worst happens and the power is cut off.

Finally, John Kenny explains how the transporting of the Spectrum complete with its power pack, cassette player and printer and the usual number of wires and connections can be made easier. The result is a neat case which tidies all those trailing wires.

[^0]

THE MOST IMAGINATIVE GRAPHICS PROGRAMMING SOFTWARE FOR YOUR SPECTRUM.

URE Eaner:
abctisehtiximneparatc
upe mecoeronzahl miveponstu
es
Q4 H

There's now one piece of soflware that's a must for every 48 K SPECTRUM owner.

It's called "PAINTBOX".

If you wish to exploit the full graphics capability of your machine, you can do so . . . simply and easily with "PAINTBOX".
"PAINTBOX" is produced by Print ' n ' Plotter Products - the company that has pioneered (and led) the field of graphics aids for ZX Computers.

With our name and reputation you are assured of quality and immense graphics capability!

Take a look at the actual screen prints opposite. They are the sort of thing you could produce on your SPECTRUM.

With a little practice - and "PAINTBOX" - you could be planning, producing, and utilizing these sort of graphics in your programs - producing software that will come alive with originality!

Just look at some of the facilities available from "PAINTBOX":

UDG EDITOR:

Giving you the facility to define (and re-define) up ACHILD to 84 graphics characters which can be held in memory, stored in your BASIC programs for instant recall from its own built-in machine code!

UDG DRAWING BOARD:

A fully integrated UDG Planner for up to 4 Banks of user-defined characters. Planning facilities include MIRROR IMAGE, ROTATE, INVERSE, and FILE.

SKETCHPAD:

An experimentation "window" that allows you to try-out your UDG ideas during development of the 84 graphic character set.

PRECISION PLOTTER:

An amazingly versatile high-resolution drawing board which includes PAPER choice, INK choice, PLOT, DRAW, DRAW RADIALLY, CIRCLE, ARC, OVER, FILL, instant change of INK colours (including BRIGHT), ERASE, and STORE in permanent memory during development!

All cursor movements can be controlled by Joystick or Keyboard operations, with choices which include FAST or SLOW movement and "Crosswire" or single Pixel cursor!

SCREEN PLANNER!

Combining the best of both worlds! PRECISION PLOTTER and UDG Characters! For complete screen planning of graphics. A multi-purpose graphics facility to enable you to produce screen graphics that are the equal of those seen in bestselling software!

All graphic results can be sent to the Printer, saved as SCREEN\$ or SAVED as CODE with its built-in machine code routines for instant recall from BASIC.
"PAINTBOX" is such a comprehensive graphics toolkit that it is impossible to describe it all in one advertisement!

The program comes complete with a cassette demonstration of what you could produce with "PAINTBOX" including a 28 page booklet describing in easy-to-understand language how to use it for best results and many tips for storing and using your graphics in BASIC programs.

Of course, "PAINTBOX" is ideally suited for use with Print ' n ' Plotter's other great graphics aids.

The dedicated programmer will want to use it in conjunction with our ZX SPECTRUM JOTTER PAD - THE ORIGINAL (AND BEST) GRAPHICS PLANNING PAD!

So why not place your order today?
Write now. Phone your Credit Card. Ask at your local computer shop.

At only $\$ 7.50$ (plus p\&p) it's a marvellous investment for all ZX SPECTRUM owners . . . of all ages!

01-6607231

 24HOURCREDTTCARD ORDERINGPoost to: Dept SP Priat 'n' Potter Products Lid., 19 Borough High Street, L.ondon SEI 9SE. Please send me:
.... PAINTBOX" SOFTWARE [$£ 7.50(+75 p p+p$ lotal $£ 8.25)$ SPECTKUM JOTTER PADS @ $\$ 7.50$ ($\$ 1.50 p+p$ total 89)
. . . SIPECTRUM KEYBOARD OVERLAYS @ $£ 2.60(35 p p+p$ Iotal 22.95)
. . . SROLIS ZX PRINTER PAPER @ $£ 11.55$ ($95 \mathrm{p} \mathrm{p} \mathrm{f}+\mathrm{p}$ lola! I 12.501
. . . SELF-ASSEMBLY CONSOLE (SI'ECTRUM) 雇 $\$ 4.50$ (75 p p+ptotal 85.25)
$\square 1$ enclose remittance in ioll
\square Please bill my Access/Barclaycard/Visa/Mastercard No:
 NAME

ADDRESS \qquad

1 DEALERS:

Phone 02-403 6644 for enquiries

PTOGRAMMABLE INTERFACE
The AGF Programmable Joystick Interface is a unique design offering the use of any Ataricompatible joystick with abuotstely all software, whether it is cassetie or ROMA cart. ridge, with the Sinclair Spectram of ZXaI.
The hardware programmable interface requires no additional software and accurately replicates the keys of the computer in a manner which is responsive to absolutely Al.L key resding methods, both BASIC and Machine Code.
The interface does not interfere with key operation and can therefore be used nimultaneously with the keyboard,
There is no need to remove the interface ance fitted as the rear extension connector will accommodate furthor expansion, i.e printefs Dr RAM packs utc. This important feature avoids excessive wear to the expansion port. The key replicstion principle pioneered by AGF means that your own programs can use eight directional joy*tick movement by utilising simple key reading BASIC.
Two joystick sockets are provided which shine the sime keys, for use with the majority of two player games. Several intermaces may be usod on the same computer for multiple joystick applics itions.
The intecface is programmed by a two digit code, which is looked up on a psogrammias chari supplied, for each direction and firing buiton. The two mumbers are then selected on a pair of leads which are clipped onto appropristely numbered strips on the interface.
Once confligured this can be marked on a Quick Reference Programming Card for toring with the game. As the programming is not power dependent the interface retains the last configuration made and can be immediately used when next switched on.

KEY FEATURES

* Programmable desim pives TOTAL soffware support.
* Accepts Atari, Competision Fro, Wico, Starfughter, Quick Shot, Le Stick ete.
- Rear extension comnector for all olher add-onx
- Free demo peograns and inatructions.

PACKAGE CONTENTS SUPPLIED

- Programmable Interiace Modute an illus. trated, complete with clip-on programming leads.
* Seff adhesive programming charb detailing how to define which key is simulated hy UP, DOWN, LEFT, RIGHT, and FIREThis can be fixed on to the ete of your computer or if preferred the protective backiog can be left on. The chart is made of a very durable reverne printed plastic and is extrematy easy to read.
* One pack of Ien Quick Heference Programmiag Cards for ai-a-glance netting to your games requirementic The card allows you to mark the confifurstion in an easy to read fachion with space to record the software titte and company name.
* Video Grnffiti demonstration proyram which is written totally in BASIC to illustrate how all eight directions and fire can the read. This is ation a theful high resalution drawing progratin.
- 12 months guspantee and full writies inniructions.

JOYSTICKS

CONTROLLERS
\square
FOR USE WITH OUR INTERFACE Module of VIC 20 , Commodore 64 Atari VCS, Atari 400, Atari 800
If you require extra Joysticks for our origimalinterface module mark order 'OLD' Joysticks
ONLY E7.54 inc VAT + P\&P
ALL ORDERS CONFLRMED

FROM: MR/MRS/MISS
ADDRESS

SEND C.W.O. (NO STAMP NEEDED) TO: AG.F. HARDWARE, DEPT. SU
FREEPOST, BOGNOR REGIS, WEST SUSSEX, PO22 9BA

QTY	ITEM		ITEM PRICE	TOTAL
	PROGRAMMABLE INTERFACE		33.95	
	JOYSTICK(S)		7.54	
	PACK(S) QUICK REFERENCE CARDS		1.00	
ONE	VIDEO GRAFFITI		FREE	
ZX81 $\square \quad$ 2X SPECTRUM \square DEALER ENQUIRIES WELCOME		Please tick	FINAL TOTAL	

JOYStick INTERFACE II) Spectrrum

JOYSTICK INTERFACE

The Interface Modute II has been specially dessighed to plug on to the rear connector of your 2X Spectrum or 2X81 and allow you to connect any standard Atari type digital Joysitckn. All of the computer's connections ure duplicated on an extension conatector so that you can still use any other devices intended for use with your computer. The Interface Module II etsides in the same memory space as the keyboard, which remaine fully functiongl at aft times, therefore it will not interfere with anything else it will not
connected.
When a suitable joystick is plugeed into 'Shayar 1' socket its action will mimic pressing the cursor keys, up "7", lef1 "\$" and so on, The firing button will simulats key $\$$ This unique fasture gumanters the best soft. whre support.
Take a leok in the setection of compatible fakes we have listed. More ase being added all the lime as a result of our contact with the various software companies,
A second Joystick may be connected in the 'Player 2' poestion which simsulaten in a parsliel fathion keys T-Y-U-1-P. This will allow you to play a whole new gencration of two you to play a

* Proven cuntor key simulation for traximum softwaye support
- Accepts Alari, Competition Pro, Wieo. Starfighter, Le Stick, efc Joysticks
- Second Joystick facility
- Rear extension connector for atl other add-oms

AGF COMPATIBLE SOFTWARE -
AVAILABIE NAIIUNWIDE.
The following tasles are available from us:
Cialactic Jatbreak/ : Apocolypse
Snake Software $\quad \mathbf{4 . 9 5}$
$\begin{array}{lll}\text { Snake } \operatorname{Tanx} & \text { OK'tronics } & \text { £4.95 } \\ \text { E4.95 }\end{array}$
31) $\tan x$

OK Tronic
Incenlive softwhre L.td 55.50

Phecrsix
Iscape
31) Tunnel

Knot in 313
Cyber Rals

Megadodo 5
Soflware
New Generstion 5.50
New Genertition Soflwase $\quad[4.95$
Silversoft \quad ¢ 5.95
COMPATIBILITY CASSETTES $\mathbf{8 4 . 9 5}$
These cassettes have shon frograms to load befare the chosen game which will convert it to use the cusas keys sind therefore become computible with ibe Inserface Module II.
Cussette 1 converis Cussette 2 converts

Arcadin

schizoids
Hungry Hotace
Horsce Goes Skilng
Spectres
Penelratos
$+w$

+ will + Invaders
Will require $48 K$ Memory

FROM: MR/MAS/MISS
ADDRESS

SEND C.W.O. (NO STAMP NEEDED) TO: A.G.F. HARDWARE, OEPT. SU
FREEPOST, BOGNOR REGIS, WEST SUSSEX, PO22 9BA

QTY	ITEM		ITEM PRICE	
	INTERFACE MODU	LE II	16.95	
	JOYSTICK\{S\}		7.54	
SOFTWARE:				
SOFTWARE:				
Z $\times 81$ D	ZX SPECTRUM \square	Please tick	FINAL TOTAL	
DEALER ENOUIRIES WELCOME EXPORTPRICES ON APPU/CATION				
			NTER Screens 6 Main Avenue, Moo Middiesen. Syntax Computers 76 Cornwall Sireet, Teleco Video 53 Maple Road, Penge Telford Electronics 4 26a Bradfors Street, Shropshire TFII BA The Computer Shop Unit 25, findyside Newcastie-upon-Tyne The Computer Cente 26 Anlaby Hond, Hu	Narthwood h PLI INS tom SEzo uting Percy Street, PZ bentide) Litd 2PA

AMAZING FEATURES AT A VEAY LOW COST Baftery backed up Real Time Ciock with month, day, date, hours, minutes and secunds. Program il control the Clock in on boand PROM MEMORY - saves your computers memory.
Only ONE LINE in your BASIC PROGRAM is needed to read of write the date and time. Eight programmable OUTPUT chanvells ITTL compatiblel
Eight programmate INPUT channeets ITTL. compatible)
EXTENSION for Rampack, Printet etc. included
POSSIBLEE APPLICATIONS INCLUDE: Hame Control, Electronic Diary with Alarm, Programmable Timier, Sophisticatod Burglar Alarm, Auto Stopwatch, Sound Effects, Time te: Date Displays, Light Chaser, Disco Cantrol Console, Auto Teleqhone Dialer. On/OH Switch Control, Temperature Control, Power Monitoring, Automalic Testing, Robot Control, Elec tronic Games, Reaction Timer, Effects for Games. Train Controller, Audio Outpus, Counter, Process Control, Scientific Applicat ions, Lab. Experiments, Tirne Recorder utc.

Notes on a few of the sbove applications are included in the mamual.

ADD ON MODULES which plug into the Time Contraller's INPUT and OUYPUT connectors will be available shortly, and will cover most of the abowe applications.

AMAZING VALUE
2×81 TIME CONTROLLEA only E34.50. SPECTRUM TIME CONTROLLEA only E38.50. If you den buy a similar product at a lowis price, we will match it.

OTHER PRODUCTS
PAODLUCTS FOR TME APPLE $11 / 11 E$ COMPUTER" LOOK AT THESE PRICES 64K 80 COL CARD 11E Unheatable value $\quad £ 129.00$ TIME KIT Clock Calendar with Electronic Diary Softwore $\mathbf{E 5 9 . 0 0}$ PASCAL ROUTINES............... For the Time Kit $\begin{aligned} & \text { E16.50 }\end{aligned}$ PARALAX CLOCK DISPLAYS For the Time Kia $£ 16.50$ a CHANNEL A/D CARD......... An inexpersive data aquisition sysiom \quad E88,00 CHANNEL INPUT OUTPUT CARD
688.00
6590
"Also available from PETE \& PAM COMPUTERS AND SBD SOF TWARE

Time Controller ZX 89 $\mathbf{5 3 4 . 5 0}$ Tirne Controller Spectrum $\quad \mathbf{3 8 . 5 0}$ Time Kit E59.00 BChannel mpul output eard E59.00

64K. 80 Col. Card A/D Card
Pascal for Time Kil Paralax Clock Display

E129.00

UNITED KINGDOM
Westley House,
Trinity Avenue
Bush Hill Park
Enlield ENI IPH
Telephone: 01 366 3245 (24 hrs)

IRELAND

Meenane,
Watergrasshill, Co. Gork. Ireland
Telephone: 010.353-21 989209 (24 hrs) Telex: 75444 CTT

Add E1.50 p $\mathrm{E}_{\mathrm{a}}^{\mathrm{p}}$, any size order. Do NOT add VAT. Send SAE for information, I enclose cheque / P.D. / Credit Card for
\qquad
1 may return this product withir sovin diry if I am not sartisfied.

BLOCK CAPITALS PLEASE
NAME
ADORESS \qquad
\qquad

Dual interface which is simple to use

MOREX has produced a Centronics and a proper RS232 interface for the Spectrum. Both are contained itt a small black box which plugs into the back of the Spectrum. Only 850 bytes of machine code are required to operate the interface and it is located below the USR-definable graphics section of the 16 K or 48 K RAM - both versions are supplied on the same tape.

Both interfaces will operate via the LLIST and LPRINT commands once a call to the machine code has been made via the USR command. The RS232 will also allow 1 NKEYS from an RS232 device. The code sent.can either be all codes from 0 to 255 or they can be sent as TEXT which would normally appear on the screen.

Various speeds can be set on the RS232 to a maximum of 600 baud on a 16 K machine - it can be set higher but the manual warns it can be unreliable

- or 4,800 baud on the 48K. The baud rate cannot be split, to work Prestel for instance, at 1,200 one way and 75 the other.
The RS232 has the same handshaking as most professional devices - CTS, RTS and TX, RX data on a 7 -pir DIN socket. No plug is supplied.
The only difficulty was finding some device with which to try it. It will not work with non-standard devices as it requires a negative voltage to register as the LOW condition. With a BBC Micro Model B it worked very weil; as the BBC allows the RS232 to act as the keyboard, the whole machine could be controlled from the Spectrum, which should be very useful for schools.

The RS232 is also a bothway device, so PRINT statements and programs can be fed into the Spectrum as well. It in simple to use and very well-documented in the manual supplied, inctuding a list of system
variables for machine code users.

The Centronics interface has a 26 -way IDC conneclor - the same type as the BBC -50 there should be no difficulty in obtaining a printer cable. The Morex interface costs $£ 45.95$ from Morex Peripherals Lid. An RS232 lead to a 25 D-plug costs E13.45. II will also work with a version of Tasword 2, the Spectrum word processor.

Interesting amplifier

KELWOOD COMPUTER Cases has produced a powerful amplifier for the Spectrum to amplify games and keyboard beeps. It is contained in a plastic box only $4 \frac{1}{2} \times 2 \frac{1}{2} \times 1 \frac{i n}{}$. and contains a one-chip amplifier based on the LM380 chip.

It has a power ON/OFF switch, volume control and loudspeaker built-in and it runs off a single 9V PP3type battery, included in the price. It should improve most graphics games which have sound and make them more interesting.

A version of the amplifier can also be obtaited buile into the company's power base module - a metal sloping stand with power $\mathrm{ON} / \mathrm{OFF}$ and tape LOADSAVE switch. It is called the Sound Power Basc. It requires no battery as it is driven from the Spectrum power supply.

The Supersound Specamp costs $£ 7$ and the Sound Power Base $£ 19.95$ or 117.70 from Kelwood Computer Cases, Downs Row, Moorgate, Rotherhain S60 2 HD . Tel: 0709-63242.

Spectrum pack

A HARD green plastic briefcase which can be used for a Spectrum costs only $\mathbf{8 3 . 9 9}$ at W H Smith. It is intended for children going to school and is approximately $15 \times 11 \times 3 \frac{1}{4} \mathrm{in}$. Although it contains no foam or other lixings to hold down a Spectrum, they can be put in by a user easily. It will hotd a tape recorder, Spectrum, power supply, printer, plus a manual and a copy of Sinclair

Projects. The only thing to watch with the cases is the hinges on the front clasps as they are thin and will snap after prolonged use.

They should be strengthened with carpet lape or Mexible plastic sheet should be stuck over them.

The cases are available in four colours and are strong as well as cheap. They also make the computer easice to pack and store.

Natural sounds by Cheetah

CHEETAH MARKEIING it not only auto-runs to inhas produced a speech output device called the Sweet Talker. It is complete in a black plastic box the same size as the 32 K RAM pack for the Spectrum. The unit contains a very powerful amplifier and the tape with
troduce itself but also shows some very good programming practice.

The instructions are very simple and the unit should not clash with any joysticks or other iterns, as it uses 1/O port address 7. That may
clash with some Sinclair peripherals - the Microdrive, for instance - as Sinclair fends to use only one bit of an address going low to operate equipment and using port 7 takes all the bits from B7 to B3 low. Cheetah may modify the address.

Programming is done by using phonetic sounds which allow you to produce the sounds necessary to make up a full word. Sitences can be included to stop the words or to provide pauses between words - of up to 200 m . The Sweet Talker seems to be about eight to 10 times as slow as others available, which makes it sound more natural. There are ZX-81 and Spectrum versions.
Sweet Talker is available from Chectah Marketing, 359 The Strand, London WC2. Tel: 01-240 7939. John Menzies and Boots also stock it. The cost is £34.95.

Simple link with world

AMBIT has produced a modem to go with its ZX-81 RS232 interface. The 300 baud modem is acousticcoupled to the telephone line by pushing the standard telephone handset into two foam blocks containing a microphone and loudspeaker on top of the modem.

That makes the unit usable on a normal telephone and it does not have to be wired-in and does not require British Telecom to provide a special plug. The modem is easy to construct but a few points need to be emphasised which are not in the notes.
One is that the kit does not inclede a power supply
for $+12 \mathrm{~V} /+5 \mathrm{~V} /-12 \mathrm{~V}$ required to run the modem. You will have to design and build one on Veroboard, as the company does not market a suitable one. The circuit relies on through-theboard connections made by soldering the component wires on both sides of the board, so check them carefully.
No mention was made of how to connect the piezoelectric devices used as loudspeaker and microphone. The microphone has three connections and was found to work correctly only when the outer two were used.

It is recommended that
you also buy the hardware kit, as it makes a poriable box as well as containing all the electronics.

Tried with several databases, including the Ambit Rewtel, it worked well.

The ZX-8I interface costs £32.40, the modem $£ 22.94$, and the hardware kit for the modem $£ 13.80$, plus a flat charge of 60 pence for postage. The interface to the modem is TX data, RX data and Carrier - RS232 standard. You will also need a motherboard of some size with the interface.

Ambit International, 200 North Service Road, Brentwood, Essex CM14 4SG. Tel: 0277-23090.

Aid to better loading

THE ELINCA 2X Tape. loader is a box which contains all the elements to clean doubsful tapes and to ensure perfect SAVEing and LOADing of programs. The black box contains a small theter with which to set the level of the input from the tape recorder, a three-posilion switch for selecting SAVE and LOAD, and two tape filters.

It also has a red LED to indicate what mode it is in. The LOAD amplifier keeps the signal constant and fil-ters-out noise caused by the tape recorder, as well as sharpening the signat. The SAVE filter is a passive -non-powered - one which eliminates noise from the Spectrum or ZX-81.

The unit has two jack sockets in one side and two leads from the other to plug into the EAR and MIC sockets of the computer. It is not necessary to keep unplugging the leads with the unit on SAVEing and LOADing, as the switch deals with that.

The unit is powered by a PP3 battery which has to be fitted inside the unit by the user - it is not supplied. It works very well and having a meter on it makes it easy to set up. It will not cure alt tape problems but generous hints are given in the instructions as to what can be causing non-loading.

The unit is guaranteed for one year and may be returned within seven days for a refund if you are not satisfied with it. The Elinca ZX Tapeloader is sold by Elinca Products Lid, Lyon Works, Chapel Street, Sheffield, priced at £14.99. Attempting to get
complete simplicity

I FEEL 1 must write to draw attention to a trend which I sec occurring in the projects you publich - that they are not complete projects within themselves.

In the RTTY interface projes a terminal unt also had to be huile for which no circuit was given. Two relerentes wers quoted bur manky people would nol hive aceess to them, so although I wanted to build the progect I coukd not da so. If a cirenis had beers givell, the projeet would have been complete.

The EPRKOM programmer was incomplete is that the article gave no detath of intertacing the I:PROM back into the 7X-8i atter hlowing. A perthon who knew how to do it would probably also have the knowledge to huild a:1 E:PROM programmer any* way.

Your requirement that projects be designed for building on Veroboard is commendable bul it the point I have mentioned is not acted on I feet the projects will be of interest to fewer people.

Your magazine is otherwise very good and 1 enjoy every issue.

Robert Dawkes, Christchurch, New Zealand.

- While is is our intention to keep most of the projects simple, in that they can be used on their awn, there will be a few special-interest projects which will need extra equipment, as in the

RTTY project. The evira equipument neeted in that project is really beyond the scope of a project for the mugazine.

Graphics

IHANKS to Tony Neel for the article on a graphics support system. Just iwo comments. tane 303 was not given as a black space and line 704 blowuld have been cight inverse spaces.

I also found it usefol to pus fast and slow at lites 1507 and 1575 , with after "Cony" in line 1303 an instruction to wail 10.

Thanking you for a greal tmagazine.

Anton Mathews, Twickenham,
 Middesex.

Generator

I WAS very pleased to see a new magazine for 7 X elsers. I started to build the Giraph. ies ciencrator and I spent several hours studying the test. diagrams and photographs. The text was so ckar even I could ardersstand it but the photo. graphs were totally incontpreterssible; on both photugraphs, the conmeetions seented to be aenther here nor there, the pins of the [C's appeared to go dowt between the rows, and the plrotographs were inadequately iltuminated. so it was very difficult to see the connections in somes places.

I tried to build the circuit despite that and it would not work. When the second
issuc appeared, with the Veruboard plan view. I Iried agaia to build the circuil and ugain it did man work. The diagram was labelled PCB layout and ia fact is the top view of the Veroboard. lite comnes. fions shown are not the sarne ats in the pholograplas in the fiss isstac; all the tracks are mot shown, which makes it very difficald to see the aligument with the IC pilst.

Even where the tracks are shown Itae conlwections ate not (3n them - they are often in the middle of the wo. Could you give a neal diagram of the top of the Veroboard showing the Itacks and with the connections on the tracks, and the tritcks rumning througls the middle of the 16 pins?

Clive Morton (aged 14) Sheifield.

- The sockels used in the Ciraphics Gencrator were a Jithle umasual ins that the sockets and prins wern off. set, making it diffficalt to follow the photographs. Issue 3. page I6 shonld hetp you to get the board working.

Sound

1 BOUGilt the June/July copy of Sinctair Projects for the Spectrum Sound Generator. I bought most of the compenents and got under way. I followed the Veroboard diagram very carefully. It was nol until mounting the components that I noticed a mistake in the diagram. The breaks be-

1ween IC3 and IC5 are in the wrong place.

The mistake cost me an expersive piece of Veroboard. As it was the first project that : decided to build t was very disappointed. Also cans you tell me the value of the resistor befween pilss I and 4 of ICl -AY-3-8910.

N Brayne, Buabury,

 Oxon.- He apulogise for the error. All cuth on the figure sis keybuard hole 24 shmid be moned left ore place. Do not dissard an expensive mieere of Veroboard because of the mistake. Breaks in the brate call be bridgert with short fengeths of wirk.

The walue of the rewistor berween pins / amd 4 ar pins 4. 3. 38 and ground in $1 \mathrm{~A} S L$ as indicuted on the circuit diagrum, fipure onk on pagke 25. Sere the undure in this iscue for a chunge to the somul brourd dewoding. With that change yont will not need /Cs and you need only IC3 if wou build the sepurute chock, se the incorreet irack breaks should cause no great afficulty.

Prowler

AFTER RI:ADING the fiftla issue of Sinctuir Projecta, i wats very interested in the Prowler robol, but [have a 48 K Spectrum.

Could you please tell me als the necessary changes; also what rating are the motors? Would it work on a 16 K Spectrum?

S Munns, Northamptera.

- The cuble from the Prowter plugs into a standard 8-bis output port and so will run on any computer. No changes will be necessary' in the construction of the Prowler. The
onfy change necessary will be in the software. For a 48 A Spectrom you will need to wse an //O-mapped pors and use OUT instead of POKE. The motors are If 10 3V and dran whour 300 mA from the buttery on Prowler.

Drummer

AFTER BEENG bought a ZX-8I lor my birliday 1 soon hecatte bored with mombtolous, aggressive gatnes. Turning to Sincluir Projects for inspiration, I was thon impressed by the provessiomal atatude to presjects, matred only by poor circuit diagrams and so I am Broning to you 10 ask how, if it is pewsible, could ? rum a drums mithine olf my ZX-81!

The internal triggering of the unit requires a rjsing edge voltage pulse of about 7 to 15 volus in amplitude.

Would it be possible to trigger the unit by diode bulfering one, or more, of the output channels? [s transistor switching required of complex digital-to-arsalogut comersion necded. Opto-isolators being 100 slow lor rapid triggering, the drum machane triggering is less than onetenth of a second.

A I Judu.

Nuncaton.

- We hope in the fittere fo have an articto on interfacing a computer ta a synhesiser which could give rom sume steds. In the mermlime. try onfe-ismbators. Moxe of them work of well
over IOOKHzand so will be more than fast enough.

Clock

I READ with interest the articte on the Real-time Clock lor the Spectrum and am interested in adapling it 10 the 4 Kk machine. As 1 am a bardware man. 1 would apprectate infornhation on the corred program location to the for a 4KK Spectrans. Perhaps you could give some pointers.
I) Fowler.

Bognor Repis. Wess thisex.

To use the muchint cerfe rowtitie with she fixk Spoce. irum, the followiss difer. ations must be thate for roluthe? ?

LINE IO SHOULD READ.
"CIEAK 65267"
I.INE 20 SHOULID READ:
"FOR $a=6526$ N $1065307 "$
LINE GU SHOUID REID:
"POKE 65268, etc': PONE 65369. etc"

LINE SIO SHOULD READ: "POAK: 65270, एHE: PONE' 65271. efc"

JINE HH S/HOUD READ: "PORE 65272. che"
I.INE 160 S/IOUI.D RH:AD: "StVE o\& CODI: 65 268 c, g $^{\prime \prime}$

The followimg bress shoustel be chanked in the data statemens: Bytes 4 und 7 should he 254 Bytas 9 and /I showht be 120 Byve 10 sitould be 237

You should then be able to use the projes' with your 48 A spectrum.

Over-heating crashes can now be prevented

1.) J IEASTON or Tatumon has fotlowed the dindussion on ower-beationg of the 7.X-8I with interent ats he has also sulfered system crashes. He has
now found an effective temedy, hasing cothstracted a cirmpletely-regufar ed 9 V supply and it has prevelated over-leating of the computer. While
claming no originality tor she circuit. he sall vouch lor ils efficiency.

Doubling graphics capabilities

FOR THOSE who have mastered the (iraphies Board project there is a very simple way of doubling the graphics ability, discovered by Tony Nosl and Mark Paraskeva while at Southampton University.

At present the ariginal Sinclair 12 RAM inside the compurer is used to stare the codes but it is engaged onts from 15872 w 16384 , i.c., only 512 bytes are used. As to whelser the tep tK or the hastom 1 K is used depends on address time AS being either higlt
or low, which is controlled by the Z80. By switching A9 it is possible to have complete control over which hall of RAM is engaged, thus givisg access to two independem charatier sets. The construction details are:

For siagle 4118 Ik RAN 16 remove RAM IC casefully froms its sweker; berad pin $2-$ address line A9 - or the $\mathbb{C C}$ in a similar manger tor the remaising pins and replace; costnect pin 2 of the RAN if to lae celatre terminal of a new toggle switch. \$2:

conned one of the other two terminals on the switsh to 0 V , the other to +5 V . For two 2114 ! h RAM IC's remove each $1 C^{\circ}$ and bend pin is of each IC satelully - address line A9; commed together those two pins by using fone insulated wire as accomplished previously: join one of the gins to the centre terminal of a new toggle witch, $\$ 2$; proceed ats lor single 1 K R M . Check for the carsor before re-assembling. If the modificatoon hats worked. (wa slighty-dilferem ratndean pateros will be seen when swithing S 2 - with S 1 open. Switching $\$ 2$ with $\$ 1$ closed will have 1se effer. Ta write or ebther section of the 1K RAM, write to 15872 16383 as nomatal repardless al the position of S2. To write to the oblher hati, swiel S2 and re-write to blic same adteres, i.c., the 7×-81 has been looled into writing fo the "pposite half al the RAM lecause we hive intervented.

The switch $\$ 2$ may be used as an inverse video switeh by firs poking ino memory the character conder as notmal, thet thanging the POKE Fine $10:$
POKE \{whatever),255-(previspus) then switch $\$ 2$ before rumning.

On Noel*s $7 \times$ - 81 he lound it uselal of include three t.l:Ds which serve to tell the mode. They are red, mormal; yellow, graphies 1 : greem, graphies 2.

It is necestary to exchange the two minatare loggle switches far two double-throw laggle swithes.

Four-button keypad

ONE OF OUR young readers, I4-year-old Christopher Cook from Anglesey, has discovered this cheap and simple way of producing a four-button keypad which gives similar lunctions to that of a joystick.

II requires no interface but has one disadvantage - the case of the $2 \mathrm{X}-8$ must be opened to make the five connections.

Readers can take advantage by following the diagrams of the connections to the $\mathrm{ZX}-81$ and the keypad wiring.

Upopail
 Errors and mishaps

Augusi/September. Graphics toolkit, last paragraph. "press 6" should he "press L."

Burglar alarm, page 31, column 3, line t. "until you cxccute OUT 65503,0 " should read "until you turn off the supply to the bell".

Real-time clock. C3 should be $16 \mu \mathrm{~F}$ 16V. Last sentence, . . . memory address . . . should read . . . pors addiress . . .

Issule 1. Christmas lights. C1 is $100_{\mu} \mathrm{F}$ 16V. Page 12, column 1, last paragraph should read "twist . . . together until tight, you."

Battery-backed RAM, page 20, figure six, the comection to position 50,1 should be to 50,2 ; page 18 , ligure four. column I "OE . . . data output lock" should read " . . . data output latch".

Weather slation page 29, figure eight. The circle with a cross in il and marked 6V 50ma should also have beem labelled "bulb".

Joystick, page 33. ligure three. R6 is chlier the upper or lower circle but not both; page 30, figure four, 74LS365. The buffer connected to pins 11 and 12 should be connecied to the enable line like the others.

Waveforms page 34, column 3. Paragraph 2, last line should be "above" not "following". Figure one should be figure 1wo: page 35, figure two should be Cigure three and figure three should be figure one. Page 36 shouid be labelled '"ligure one continued'. Drawing of D-1ype flipflop - the lower Q should be Q; similarly for the JK flipflop.

Burglar alarm, page 40, figure two should be liguse three. The RD by connector 10 should be WR.

Problems on earlier sound board
now overcome
The clock signal on Series One Spectrums may be too weak to drive the original project, Graham Bradley has made modifications which allow it to be used with the $\mathbf{Z X}-81$ and Spectrum.

OME READERS have bad difficulty saking the Spectram Sound cienerator project ol the June/foly issue work. The reassm is that the clock signal on Series Ont Spectrums is very weak and thay net be sufficient to drive the stound generator chip. Sos we have modified the address devoding to use lewer gates and uned the spare ones to huild a clock oseillator. The modified decoding circuit uses only lour gates.

If you are just starting the sound generator board we recommend that

of timatimil pitch and thatations			

you build it so that the bourd stands verlically; by adding a ZXiongac or Spectongue you can use it with otber add-ons. If you use the shorter ZX-81 sonnector you can use the board with both the ZX-81 and the Spectrum, because the moditied decoding scheme only uses A7 and A4, which are in the same connector position on bolh machines.

The modificd sound board gives access to the 1 wo bi-directional 8 -hit ports of the AY-3-8910 which can be used with the projects Prowler or

Weather Station. The connections 10 the two ports are the same as the modified Latch Card socket in the Prowler project of the Augusi/September issue.

If you wish to drive much ad-
ditional circuitry from the sockets, to avoid overloading the comptater 5 V regulator a separate 5 V regulator should be mounted on the sound board and used to suppiy the 5 V for the two port sockets. Alternatively

Figure 2 . New recording circuil using IC \mathbf{t}.

tigure 6.

the regalator could be built alongside the external circtitry and powered from the 9V lines from the port sockels.

With the re-arranged decoding, address 111 emables the address lateb input by causing $813 I R$ and BCI to go high. OUT III, n seleets register n. That will then be followed by the command OUT 127, a which witl load register n with the value a. Address tine A7 can be replaced with Af or A5 to change the address location for use with other add-ons, or it could be flecoded further as described in the article Address Desoding - April 10 July issues. The new decoding circuit is shown in figure two. It is built around the existing IC4 which is a quad NOR gate.

Figure one shows where the connections are made to the clup on the Veroboarsl. The oscillator circuit is build around threc inverter gates on the existing 7404 JC . Changing the value of C1 will affect the frequency of oscillation and thus can be used to tune the pitch of the PSCi output.

To change the existing circutiry on your board, take all the ICs out of their sockets, then take off all the wires going to the sockets for IC3 and JC4, except those wires going to pins

[^1]

7 and 14 of the sockels. They are the supply lines and will be needed for the new circuitry. Then re-wire the sockets according to ligures one and lour.
Then if you wish you can fit the sockets for the AY-3-8910 ports by
first removing the socket for IC5, the 74LS08 which is not needed, and then fitting and wiring the sockets according 10 figure five.
Leave al least one track between them so you will be able to insert
header piugs in each socket without them fouling each other．Use pieces of insulated wire to make links under the Veroboard diecelly to the pins of the AY－3－8910 IC and to the $5 \mathrm{~V}, 9 \mathrm{~V}$ and 0 V lires．

If you had difficulty inserting the two IC． 1 C 3 and IC4 because of their close proximity it is possible to file a little from the end of an IC without
damaging it to case insertion．Figure five skows the jin configuration for 16－pin header plugs used with alt Sin－ clair Projects I／O ports．That will ensure that a peripheral designed 10 work with the Latch Card－e．g．， Prowler slage one－can be plugged directly into the sound generator or any fulure I／O circuit．

II you do not have the June／July
issue of Sinclair Projects and wisk to build the sound generator，a full cir－ cuit diagram and Veroboard layout incorporaling all the emancements indicaled will appear in the next issue．

It will be fully－compatible with the ZX－8I and is buill 10 the now stan－ dard Sinclair Projects style allowing it to be used with other add－on cards through the PCB tongue．

CYBORCIWARS

 2.86 Corthin Place，2E，Brooklyn，New York $\$ 1235$ ． （o）MAHz ROERISS CIII
－SIME

HEARING IS BELIEVING Tele Sounnd SPECTRUM BEEP BOOSTER

 tesled so that you can get the dull sound of your Spectrum through any unmodilied television set．black and while or colour．The unt $=$ easy to dit in minutes without any previous experience as ful！ fitting insiructions are provided

TEustipuin han been dnaigned using the very latest ultra minlature components so if＇s size is an increfible 211.3 天 1 mm ate tils meally inside the Spectrum． Three easy push－an connections are made to the Spectrum．The connections are clearly shown in a disgram that cornes with Iull hithrg instructions．

TELESOUND FEATURES

 TEIESODNO
TELESOUNb comes complete with easy to follow fitting instructions and costs $£ 9.95$ inclusive of post，packing etc．Please state your computer when ordering．

昭PT：SP12／1 逄－ 33 LATGLEY CLOSE，BEBDITCH，WOACESTERSHIRE

Getting switched-on to the capabilities of electronics

Most projects involve the use of electronic components. Joe Pritchard explains some of the ways in which they work and terms which are commonly used.

OF WHAT use is a knowledge of digital eleetronits wo the computer enthusiast? Well, using electronics circuits mialle up of components called togie deviese, we сал сепnect, or interface, the com?puter to wher electronics eirctits which enabie us to monitor the ourside world and to control it. It will also entable us to atkl more tacilities to the computer. I hope to give the enthusiast suffecient knowledge to utilise digital electronics.

In the world of digital electronics. there are two stales in which an out. put or inpul tor device can he found. they are on or off, atso known ats । or (3), or high or low. That two-state logic of true and lalse is a!l your cemputer knows and all of its programs depend ultimately on thossands of those decisions.

Logic devices do not have to be silicon chips. We can make logic circuils of switches, electromagnetic relays ar valves. As demonsitalions of two simple logic functions, look at the two switch circtits in figures one and two.

Figure one and its accompanying table show the behaviour of a logic function called an AND function. The small table, which shows the oulpul of the logic system for combinations of inputs, is called a truth
table. As we call we from it, the oulgut is active only when inpot A and inpul B are both truc. bence the name ANI) gate. Figure Iwo shows an OR lumbion, in which a true outptat is obtained if either A OR B is truc.
those are simple examples of logic citcuits which we can define as an electrical or electronic circuit which perlornss a logical function - AND and OR in these eases - on she or mote inpuls to tlee legeic circtit, Combputers, however, are nol wery good at pressing ibutons, as they worald need tol its those systems, and so we musa
niques. What that means is that different famities of devices are made by the manufacturer in various ways. Although the methods of integrated circuir manulacture do not really concern us, the way in which a circuit behaves electrically will to some exlenn depend on how it was made. So Ies us look at the two major groups you will encernater.

The 1'te. Pamily is prohably the mose commonly tused. These devices can be recognised by their part numbers. TTt. devices all have the numbers 74 at the start ol twe part number and k least iwo more numbers and pussibly a lefter or two in the rest of the jaart manaber.

The following are all TTt. deviees

wie electronit logic chips, krown officially as innegrated ciscuits, to perform the logic functions.

Semicondactor logic devices fall into distinct fanjilies. Although we shall deal mainly with one family group, called TT1., I will also deseribe briefly the other major famsily. The families are formed of circuits exhibiting different fabrication tech-

of one kind or another - SN7400, $7402,741.504$. In the lamily of TTL devices there are many branches, of which two are of importance to us. They are the slandard TTL devices designated by $74 \times x$ and the so-called low-power Schortky devices, designated 741 .5xx. The 7400 and the $7 \$$ LS00 perform evactly the same functions but the 74 series devices use more power than the 1.5 devices.

The LS series devices are used where power consumption is important and they are also used to connect logie devices to computers. The reasom they are used at the computer interface will be described later in the series. Sometimes you may meet ICs marked with a 54 inslead of a 74 ; they are military-specification versions of the 74 range and will work with a

Figure 3.

wider range of temperalure and voltage.

CMOS devices comprise the second big family in which we are interested. They are stightly slower in operation than the J'TL. devices but consume much less power. By slower, i should firss say that we are dealing in manoseconds - one thousind-millionth as a second. A Tjl ouput ean respond to a change at the impan in as titule as 10 ns for a 74 series device, or 40 ns or so for a 741 S series device.
The corresponding lime for a CMOS device is 60 ns . The ligures become significant only when we are trying to change the input state of a device miltions of times eachsecond. Incidentally, the time taken for ant output to respond to a change in the input state of the device is called the propagation delay of the device. CMOS devices can be recognised by their part numbers which begin with 40,45 or 74 C . The latter are pin-forpir compatible with the equivalent 74 series TTL devices.

TTL., LSTTL and CMOS devices are all used in different situations wher any of their spectial abilities is required. 1 shall be concentrating mainly on the first two sets, the TTI and the LSTTL devices, but will mention CMOS when needed.
I.ogic devices of any fabrication family can be broken down furiher on at lunctional hasis. One of those groups, the combinatorial group of devices, gives outputs whicls are dependent purely on the ituput condi-
to give it its full title, the Exclusive Or function, is a function which gives, for a Iwo-input gate, an output only when one of the inputs is high. If both of the inputs are high, a low output is obtained. Thus a 1 wo-input EXOR gate gives an output when the imputs are different.

The 1ruth tables for those functions are shown in lable one. Note that whereas all the other functions have at least two inpu1s, the INVERT function has only one inpul.
later I will show how to combise those functions 10 produce more complex and more useftal logic lunctions.

First, though, let us look al the symbols used to represent those logic functions and some TTL devices

Figure 4.

INVER:
tions al that moment. The second group is called the sequential devices and the output depends on the inpets the device has received previously, as well as those at that momen.

We have already met two combinatorial devices, the AND and OR functions of ligures one and two. There are four other combinatorial runctions called INVERT, NAND, NOR and EXOR.

The EXOR or EOR function, or,
which perform those functions in circuits.

Figure three shows the 13ribish Standard symbols for various logic functions and figure four the international versions of those symbols. The international versions are much less confusing.

The TTL chip which performs the AND function is the 7408 device, a chip containing four separate fwoinput AND gates, A gate is an clec-

Table I.

Invert	
\mathbb{N}	Out
0	1
1	0

NANO		
W	WN	0 OUT
0	0	1
0	1	1
1	0	1
1	1	0

Non		
N	N	
0	0	0 OUT
0	1	1
1	0	0
1	1	0

EXOR			
IN	IN	OUT	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Tabte 3. Fien-out ability.

	$\begin{aligned} & \text { tand fultivenl Govice } \\ & 74 \quad 74 \mathrm{LS} \end{aligned}$	
Source (driving. drvice		
$\begin{aligned} & 74 \\ & 74 \mathrm{LS} \end{aligned}$	$\begin{aligned} & 10 \\ & 5 \end{aligned}$	$\begin{array}{ll} 40 \\ 40 \end{array}$

I ablle 4.

Pin 1	Pin 2	LED
1	1	OFF
1	0	ON
0	1	ON
0	0	ON

Ironic circuit which performs a logic function on the signals supplied to it as imputs. The 7408 chip is knowet technically as a quad two-input AND gate, the quad referring to the presence of four gates in the package, and the two-impur part of the description is self-explamatory.

The INVERTER function is performed by the 7404 hex inverter package, which has six inverser gates. The NAND lunction is performed by the very commot 7400 , a gutad wo-inpus NAND chip, and the NOR function is provided by the quad (wo-input 7402. The OR functith is the 7432 quad IWO-taput OR packige.

Alhhough all the devices listed sol lar have had either one or two inpta lines, there are gates with as many as 13 inputs, suctios the 7413113 input NANI) gate, which are available as slandard components.

If we wish to have a logic function which is not avalable ats a standard package, what do we dos? The answer is simple - we contrine the simple gates we have atready met to create new functions which are more complex. We can even synthesise the gates
from simple functions such as NAND functions and NOR lunctions.

That symthesis of logic funttions from simpler units is of lundamental imporlance to the design of logic systems and so we will look at what we can do. More examples will be given
be al different values. We can then simplify the truth table to remove the impossible combinations ard that gives the eable in figure six.

That truth table is exaclly the same as that for the invert or, as it is also known, the NOT function shown in

Figure S. NANis fuprition.

in fater articies and in the practical work tol the end ol this article.

We will now look at combining logic functions. Take the NAND funcion truth table.

We can see lhat when both inputs ase high, the oulput is low. Imagine that we then connect the two inputs as shown in figure six. Whatever input. high or low, is applied to "IN" will be present al boiln A and B and il can be seen that A and B cannot possibly

1atble one. Thus we have symthesised one logic lumctions from anomber. 1ook at the (ruth table firr a NOR function. Can you sece blat by llee same kind of reasoning we can symitesise a NOT funcion from a NOR function? tt is also possible to connect the outpul of sase gate to the input of anolther function, thus offering the possibility of combining dif'ferent gates. What will happen is in figure seven.

Let us make a truit table for this logic circuit - table 1wo.

At point C, we have the output from the NAND gate, which acts ass the impus to the NOT function. The ouput at poime D is the output of the NOT functios and hence is the output of the total logie system. Ignoring columat C of the table and laking columns A, B and D we see the truth lable of an AND function, thus demonsirating the formation of a logic function from a combination of other functions. As we can make a NOT function from a NAND function, we can make an AND function from two NAND gates - figure eight.

Similarily, we can combine AND and NOT to form a NAND gate -

Figure 8.
Figure 9.

figure nine. That is, in fact, the origin of the natne NAND - NOT AND. You can make a NOR function from an OR function and a NOT function. It is possible to make AND, OR, NOR and NOT functions from the NAND gate and similatly from the NOR gate. That explains the popularity of NAND and NOR gates in the eyes of mamulacturers and designers of logic circuits using TTL devices.
lt is usually much easier for the amateur constructor to use specific AND gates rather than go fo all that trouble. As wet! as synthesising new logic functions we can expand existing ones, i.e., we could use three of the two-input gates in a 7408 package to produce a rour-input AND gate, as shown in figure 10. The only time an output from gate 3 can occur is when the inputs to it are both high. Input e: can be high only when A and B are high and input F to gate 3 can be high only when inputs C and D are high. Thus we have an output only when all the inputs are bigh.

There are ntany useful combinafions of these simple gates which are used in logic design and I shall investigate some of the more important ones. A branch of mathematics has grown up to describe the elfects of combining those various logic func-

tions and it is called Boolean algebra. It was invented long before computers and logic circuits but has been extremely teseful in these fields. I shall begin a cautious examination of the subject in my next asticle but let us now look al some practical exercises
be inexpensive and will be useful in futare digital electronics projects you may wish to be build.

Power for the circuits using TTL devices cian be oblained from a 6 V baltery; however 4.5 V is the absolute minimunt specified voltage for correet working and 5.5 V is the maximum specified voltage; they with work on as low as 3.5 V and the absolute maximums volage is 7 V .

If an inpur to a TTL device is left unconnected to anything, it assumes a logical high, or I value. That unconnected state is also known as teaving

you can do to demonsirate the Funktions.

The best way to learn about digital elcetronics is by practical experience. These ideas will reinforce the foregoing text, whether you perform the exercises or mot. For combinatorial devises, all you need is 1 wo 7400 quad NAND gates; you can make all the other functions mentioned from them. For an casier life, you meight care to buy two of the other devices mentioned. All the devices we will be using in this serjes will be easily available from any of the many electronics firms which advertise in the popular computing magazines.

You will also reed a few other components as well. The best way 10 butd experimental circuits is to use one of the very useful solderless breadboards available from several sources. Components and connecting wires are plugged-in and can be removed when the circuit has been tested, thus providing a saving in components.

Any other components needed will be mentioned in each article. All will
the inpui floating. We supply I or 0 logic jnputs to the inputs of the gates by the below circuit - figure 11.

In future articles, we will determine how to get other mon-TTL circuits to provide inpuls to 7TL circuits. To make sure that the TTL. devices respond to inpuls, certain conditions have so be met by the input signals. Generally, we need a voltage on an input of more than 2.5 V for a high input and one of less than 1 V for a Iaw input.
tigure 12 h .

Making sure that the signals which reach the TTI. inputs are suitable is called input signal conditionisg and will be deall with in a later arsicle.

With regard to monitoring the outpul of the logic devices, we use light emitting diode circuits. It sloouk be noted that the circuit slown in tigure 12 b is the best, despite the need for ath exlral NOT' gate.

Jn figure 12 a , the TTL gate is said 10 provide, or source, the curremt needed to burn on the LEO when it is giving a bigh outpll. 17l. devises can source only a maximutn ol 400 mi croamps, which is not really sulficient. In figure $\ddagger 2 \mathrm{~b}$, the TTL device is not providing the current but is providing a way for the cursent to go ter ground, or OV. There the TTL device is said to be sinking lace current. It can sink 16 milliamps and that is sufficient to drive a L.ED.

A TT1. device sinks current only when its sutput is low. Thus in figure 12b the LED will be lit when the ouspal of the TTI. yate is giving a low ourput. To get a I.ED connected in that way to light when the output being monitored is high, we must conrect a NOT gate between the LED and the gate being monitored. That is why we have the extra gate in 「igure 52b.

We can connect the output of one TTL device to the input of another device. There is a limit to the number of inputs each TTL outpul can supply or drive. That depends on the the TTL device driving the inputs and the driven device.

Table three shows the number of devices which can be driven. The abil-
ity to drive other devices is known as the FAN OUT capability of the TTL device. So, armed with those technical points, we will start some experiments using NAND gates.

The 7400 device is known as a dual-in-tine package, or DIt.. Figure 13 shows the appearance of one of those devices. Most of the TTL devices have 14 or 16 pins, although some exist with more pins.

In most 14-pin devices, pin 14 is connected to the $+5 V$ and pin 7 is connected to 0 V , and in mosi 16 -pin devices pin 16 is connected to +5 V and pin ill 100 V . To see how the gates are arranged io the package, we ligure 14, Jor a 7408 device the pin-out is the same but with AND gates replacing the NAND gates. Similar situations exiss for the NOR and OR packages. There is a difference in the patkaging for the 7404 inverter package - Jigure 15.

So let us sel up a demonstration circuit for the NAND gate, as in figure 16.

Higure 15.

Figure 16.

Rensember that any input so a TTL. gate left floating will appear to the device to be a logic high. We can then set up a truth table for the circuit and we can set up the vatious inputs and monitor the output I.ED. Note the NOT gate whicla is tased to drive she LED in accordance with figure 12b. The truth table is shown in table four.

If we then wite pin 1 and 2 Iogether, we can demonstrate the inverter function. Again, thote the inverter which drives the LED. We give the inverter/LED circtit a special tante - a monitor circuit, because it monitors the state of a point in the circuit at that lime.
let us then combine gates in the chip to form new logic lunctions. Note that all the gates in a particatar device will behave identically unless otherwise stated. Althought the gate with pins 1,2 and 3 is used, the one with pins 4,5 and 6 could also be used.

Figute 18 showh an AND function made up of two NAND fanctimes. Make a truth table and ehech it against that in table ant.

Jigure ! 9 shows how we can synthesise an OR function from NAND gates. Again, ty the circuit and make a truth table for it. How could we get a NOR lianction from those gates? You should be able to see how easy it is to form complex logic functions frons these simple gates. Take, for example, the circuit in figure $\mathbf{2 0}$.

The lunction perlormed by the circuit in figure 20 is fairly complex; there are lour outpuss and one of them is active for a given A and is combination as imputs. Theus for any imput state, only one output is thigh. Try making a Irtat table for that circuit. The numbers on the diagram reler to the pins on the 7408 and 7404 chips. Use the inverter LED monitor tircuit of figure 12b. Remember to connect pin 14 ol each package to the plus side of the battery and connece pin 7 of each package to 0 V .

Try regeating sorse of the experiments using 1.5 deviees; you will find there is no difference in the way the circuits behave.

Figure 18.

Finure 19.

Figurs 20.

Recklessness rewarded by amplified sound

Roger frost has found a better way to increase the Spectrum BEEP than merely removing the cassette and EAR lead from the player and pressing play or record

SOME CASSEITIE players catl amplily the Spectrum selutd simply by removing the casserte and tiAk leat from the phayer and then pressing play or record. Ay cas4ete player dikl mat improve on the sound very well, 4s I wet to work, armed with a serewdriver, appatently abern to ruin a pertectly good player to modify it. Recklessness was rewarded hut the watorion will inwalidate abs guarantee on the player.

The sigstal loom the tape head insside the plager passer along twos wire to the circuit board. That is where the amplitier circait hegins. The गlk lead carrise two wire from the Spertratn which cary the sigm whith uted atnplifyibes. On fïrt step ia anplifying that therefore to combect the two wires from the MKC leak Is the amplitier sircuit of the cassetce player. A suitch wian lued to make the connection, so that the normal operation of the cirsette player was not intertered with in any way.

I traced the two wires from the tape leath Io the circut board and identified the poinas at which they comberaed. The two wires were unsoldered from the circuit board and re-soldered on to the end terminats of a double-pole, dauble-drors switch, Two new wires wete then taken I'sons the poians on the circuat board to the central terminals an fle switch.

So lar that arramgenment would swith the operation of the tape locad on or ofl. Next I needed to lind where the BIt input went, so that it could be comeded lo the remainiag terminate an the switel. 1 used at smatl circuit meter - thengh a battery and bulb set-up would ats - la test the batk of the AIIC wreket with the tip of the MtC jach plug and los son agains with the shanh of the jach plug. 1tis. ing found thene por pribts an the hatk ol the seckel. two tex wircs were soldered of to them and ram 20 the switely ternitials.

A lateksaw bade was thetl tred to
cul some glastic cleanly from the cassette case and install the switch neatly mito it.

Locating a good position for the switch was, perhatss, the most difiticult pars of all, tare being needed abtent routeing of wires and possible obsurnctions when sereving together Ite two haves of the case. The exact yype of double-pole, double-thow switsls will depend largely on the amorum of reom inside yeur player.

The aransormed cassetfe player autuplifies brilliamaly, bull in quatity and volume. [to operate twe player ish ant amplifier the switch is pressed, the $\mathrm{E}: \mathrm{AR}$ lead removed from the cassette socke and the player sel in platy mode. Re-ser the switch when using die cassetce player normally.
the lotal cowt was lexs han $£ \mathrm{x}-$ and the : amplifier has worked for six months without a hitech. My Spertrum in frow a very portathle and a sery independent litus mathine.

Schematised diagramis of the cassette playor and ofrcuif

In our August/September issue we built the Prowler, which proved popular. David Buckley has improved it by adding four fenders which allow it to take action when it meets something on its travels while under control from the $\mathbf{Z X}-81$ or Spectrum.

THIS IS the second stage to Project Prowler, the basic chassis of which was described in the August/September issue. With the additions detailed in this instalment, Prowler will be able 10 sense the presence of ubstacles and so take the necessary avoiding action. That sensing is done through four fenders. each conneeted to two sensilive swithes. The state of the eigh swilches can theos be read with a PEEK or IN.

In this enhanced version of Prowler a simple address and data bus has been formed, the hasebtard is an address one and other add-on buards for speech sound or other sensors, such as a simple camera, will be at higher addresses.

The modificalion means that Prowler now needs two cight-bit ports to conneol it, one of which must be entlpula and the other soliwareswitchable between input and oumput.

The two bi-directional poris on the AY-3-8910 sound generator ic are idtal for this, Pins 11, 12, 13 and 14 on SK 1 are used for the addrews jupul and pirr 15 is used lor a R / \bar{W} read. write line to control the ditection of data on the bus. Pin 9 is spare as yet: it may be used tiace.

Figure one gives the circuit with the address decoding donce by 1 C's and IC4. IC'2 and 1C3 plug in the old SK2 and SK 3 on the frowler board. TC2 has a master re-set input and R4 wilb C3 provide a low to this on switch-on. so there is no need quickly to POKE
or OUT a 0 ta switch off the hort.
The sensors are connected to the board by two four-pin, board-mounted plugs at the two rear comers. Opporlunity has atso been taken to lit two anore four-gin plugs at the starboard rear to make the connections to the thotors and batlery.

Figure two shows the additions and corrections 10 the original Prowler hoard; no modification of existing circuitry is theded. Sonse of the new connections go over the board and some go under it. Make sure when fitiong the S_{1} to S_{x} comections from near IC3 to the two rear plugs that you can still plug back the board on to the hinges.

There is a short link by D.3 which is soldered on top of the board to two

Finure 3, Hinge peris.

- Assembly

b Hinge

e Frotetitanir Fencler Supporiz

Fipare I. C'irsuil diankam.

Figure 2. Veroboard layoul.

other links. Note the links on the copper side under IC's 4 and 5. Again lit most ol the components and links before you make the track breaks.

The board is then reasonably full and the addation of more compenemes is not envisaged. The four spare 4mm, hotes by the hinge-mounting holes are for four pillars to support another board. If you keep to the layout shown the pillars witl just lite.

Figures three and four show details of the sensor switches. The touch semsors need to be reasomably sensitive and commercial puth switches all hitve too high a closure force. l.ever microwsitches would suffice but they are expensive ath the lass ones I tused had stainless steel levers which need special solder to lasten any brackets. The switches drawn are very sensitive and thexpensive bat take sente time to make. The sprimging is performed by stick-0n foam weatherseal as in ligure five. The switehes are very much bend-to-fit and need some adjustfome of the various angles for the best springing.

The l'ront and rear fenders are !in. \times 青 $\mathrm{in} . \times 3$ in. balsa wood or sinvilar and the side fenders $\frac{3}{4}$ in. \times in. $\begin{aligned} & \text { E } 7 \text { in. }\end{aligned}$ balsa or similar. The side fencters are mired at each end, so as ner tor protrude below the tracks. The exact size of the fenders is not critical but what is important is that they should be a loose fit on their supports, so that if one end moves in and opens its switch the other end remains in position and its switch stalys closed.

The photographs and figure six should be used as a guide for the placing of the switches. The exact location is not important.

First make up the assemblies on the Veroboard scraps, then epoxy the assemblies to the Prowler frame. Stick on the foam plastic blocks and then insert the fender supports. Wire together al! the loopy parts of each switch and comect them to the 0 V end of the battery compartment.

On the rear strip of each switch is a length of copper wire; they should be connected to the two sockets which will plug on to the wo board-mounted plugs at each rear torner. The right-side switches should be connected to the right-side socket and the teli-side switches to the left-side sockcl.

Jigure seven shows the new pin aliocation of SKI and ligure eight shows the pirrouts of the new 1C's used.

Reiading and writing intormation from and to Prowler is then a litte more somplicated than simply PEEK. ing and POKEing or INing and OUTithe. I, ines A_{t} to $A_{\text {s }}$ and R / \bar{W} of SKI should he connected to tines D_{N}, to D . of an output pert, while D. w D : of SKI should te conmected to D_{a} to D . of a hi-directional porl, such as those on the AY-3-8910 sound generator IC or the 8255 PIA $\mathbb{I C}$.

T's read from Prowler all that is necessary is to outpul on the address port 17 which is the board address $=$ one, plus the $\mathrm{R} / \overline{\mathrm{W}}$ line ltigh $=16$. Then read trom the data port. The 741 . 245 oetal bulfer oll the touchsense lines is enabled whenever that is done.

To write information into the 74LS273 oetal latth which conarols the motor and lights and toon is a little more complicated. The 273 is a D-fype latch, which means that information is stored in the latch only when pin 11 CP changes from low to high. That happens only when the latch is de-selected. So to write information one must set up data on the data port and then set up the relevant board address - in this case $=$ one or the address port.

The address decoding logic will then cause WR to go low, which is connected to pir 11 - CP - of the 74 LS 273 octal latch. Then if a different address is set up on the address

Hipure 8a.

74LS日5 four-bit magnitude comparator.
Pins 2. 3, 4
are cascode lmputs
for 4 bit comparison.
Conrusct pins 2. 4
to GND and pin 3
10 Vcc

74LS273 octal D-type flip flop pin-aut.

Figere 7. SK1 pin allacation.

D ${ }^{\text {b }}$	1	16	5 V
D.	2	15	R/w
D.	3	14	A_{3}
D,	4	13	A_{3}
D.	5	12	A_{1}
D. ${ }_{5}$	6	11	A_{17}
D ${ }_{1}$	7	10	Spare
D.	8	9	OV

Finure ent.
7415245 octal transcolver tri-atate pin-out.
(Smord/feceiva)

port, or the R/W line output of the address port goes high, the WR line to the ' 273 will go ligh and the data will be latched into it.

Figures nine and 10 shoutd make this clearer. Address tero is a useful address for use with dummy writes, since it is not proprosed to use that address on Prowler. All other boards will have addresses from 2 to 15.

I have not yet written software which will allow Prowler to avoid obsitackes but, on running into something, backing off and turning through a small angle randomly left or right and a randon number of degrees works with Zeaker.

When something is detected you could somad the horn and llash the lights, as well as going into the avoid routine.

Those who lave built or are building Prowler may write with suggestions for improvement. There musi be thany of them, or il you are building some add-on lor Prowler, again please write. If all boards have the eighla corner holes as indicated on the circuit layout, any board can be arranged to stack wro top of any ather hoard. Also if add-on boards have on them two sockets wired as SKI, one socket can take the umbilical froms the eomputer and the other socket can be used to daisychain, using at short 16 -way 1311 jumper assembly, down to the hoard below.

In luture articles we will look at soltware for Prowler and some addun boards with light sensors, sound chips, speech chips and sound sensors.

PARTS LIST

IC3 74L5245
IC2 74LS273
1C5 74LS85
IC4 74LS00
C3 $\mathrm{O}_{\mu} 1$
R4 22K
4 off Miricon 0.14 way socket housing "
4 off Miniten 0.14 way straight phog 16 off Mirsicon terminal *

* [Maplina|

Paper Cllps, Scraps of Veroboard: $\operatorname{Zin} . x 7 \mathrm{fn}$. \times inin. balsa sheet: emply plestic refill from ball pan; white foam plastic draught excluder strip.

Figure 10. Computef Prowler information exchange.

Te read deta

Step t Set up on the address port

```
        "Board address" + 16
```

Siep 2 Flead data
Step 3 Read data

To writa dara

Step 1 Sat up data on the data port
Step 2 Set up on the address port "Board address*
Step 3 Eirther set tin 4 of the address port De-selects the board and latches data high
Alter bints 0 to 3 of the adidress port to selent anothas board

DO YOU have trouble with Mying leads? Do you need to carry yout Spectrum around? If so, wlyy not huild a low-cost portable computing centre in a briefcase? The case can hold every piece of Sinclair hardware available, plus cassette player - figure onte. The PeC has been designed ergonomically lor easy oneration. The combecting lead fit under the packing material so that lhere will be no chance of tangles. Girboves have also been left so that if any piece of equipment fails, it will be simple to remate is wilhout disman. tling the unit.

The lirst difficulty you will enserumter is lo find a case big enough and at the corred price. You will find a suitable cassette carrying cass,

Many Sinclair users like to carry their Spectrums around. John Kenny shows how to make a case which will allow you to do this without having leads getting in the way.

Materials

Bag of polystyrente ceiling tiless - 97 perice.
Glue, Copydex.
Falf, salf adhesives.
Cassutto carrying case E8.95.
Tosal cosi about f 11
Stifl card.
Wallpaper pasie.
Black paint spray; remamber cellulose lacquer part astacks ard dissolves paty styrormf.

Tools

Sharp krula. Scissors.
Ruler.
Small paint brush.
$49 \times 39 \mathrm{~cm}$. іл W H Smith record deparaments. The second problem would be fo find a packing material which would be erlsy to work with and therefore woutd need no special fools; it would also anced to be stromg enough to hold the Spectrum and its peripherals safely.

Polysiyrene ceiling tiles seenmed to he the kind of material needed. That matcrial, berides being intexpersive, can be cul and shaped with a sharp kuife easily.
first remove the plastic casselte bolders from the botsom of the case and cut out haree sections - figure three. Measure the inside dimensions of the case and cut a piees of card to fit - i! will provide a convenjent base on which the polystyrence material can

Finure 1.

tïxure 5.

be comsermeded. Pace the card at the hollom of the case but do not glte it becance joh will focd to remove the insert for spraying later.
lake the three eassette seetions and glue them to the top lefthand corner of the hase - ligure five, il you whould have the varne diflicultese as in figure two - to have the matins, the Fair, Mic and REM sockets on opposile sides of the recorder -- you should eth a bole in the reas of the sase, as thown in ligure $2 a$.

Proced by removing the batery coter and dismantling the cansette recorder, leeding the mains lead from the power supply through the battery complartment, and solder it to the mains ingut of the tassette recorder. If you do not liee able to do that, if the mailss socket is on the side of the recorder which will be next to the prinaer, plug-in the matns lead and tape it securely in place. If the socket is sut the other side, you can plug in the mains lead through the hole in the rear of the case. The power supply lead wan then be taped to the underside of the recorder, to prevent the lead moving under the recorder and making it unslable - figure four.

Having done that place the recorder into the top right-hand corner oil the case, with the pushbuttons facing inwards. Do not replace the batlery cover. Having the pushbuttons its-
wards altows you to type and press the buttons at the same time - figure one.

Place the power supply at the bottom of the left-hand corner, leaving a 1 cm . gap from the front of the case - figure one. The text step is to cul the polystyrene to size. In this project there are eight levels of polystyrene.

To build the contours, start by glucing the base level of the card, work your way to level six - see photograph. Having reacled level six, you need 10 place the piece marked "C", of level six, into place first - see photograph. Then place the Spectrum inso place and push light; that ensures a neat lia.

Leave the Speetratn in Ibal powition and glac be obther pieces rould it: then repeat this procedure to level eight. Whetr you trate reached level cight you cian leave ahe inserl to dry. You can use some card for Ithe top cover and then feth can be glued on top al it. To make the lelt look neat. cut if so that it overlans the catrd

Figare 4.

slighaly; then bend it under the card to provide a hens.

When the insert is dry, semove it from the wase. The only problem with using polystyreme is it crambles casily: to prevent that use all old railway modeflers' technique so covering the polystyrence with stripy of newapaper. Cut 2 in . strips of newspaper, paste them and beate lo soak layer the strigh of paper ower the insert, mak. ing setre to press the paper into all corners. That not only prevents the polystyrence erumbling hut maken the stracture stronger. Idene to dry; it will prohably need io the left ater. night; when is is completely dry, spray it.

J- it the insert inter the cane and plase all yout dequpment in position. The felt-covered card cant then be pat inte plice, hiding all the wires, and giving the catce a professional limish.

You then have your Pe' ${ }^{\prime}$. To add the linishing latich I used differentcolobted letler stickers. I positioned them on the outside right-hand bettom cormer al the case - see photograph.

Self-centring effect on a joystick at reasonable price

Using many parts obtained from ofd electrical equipment, Brian Lee has made this games peripheral which can be used on both the Spectrum and $2 X-81$.

TTHERE ARE many commercial joysticks available bul for constructors who wish to make their own. Hhis design offers a relatively cheap atiernative. To keep down the cost, parts of the prototype were obtained from scrap. For example, the grommets and sleet aluminiun were from old electrical equipment.
The design provides four direction. switching buttons and a lire button. The assembly detail is shown in figure one. The slick (A) is a lengh of Meccano serewed rod and it is meunted llexibly in a grommen (F) fitted to the aluminium baseplate (C). That plate is secured to the box lid by four bolls and spacers (E). The large washer (D) operates the four microswitches (B) which are bolted to the box lid.

This arraggement gives a short

COMPONENTS LIST

Caso

Bimbox 112 - Bim 003/13 - size as in figure 2."

Fire button

Push to make switch. Maplin FH58P. ${ }^{\circ}$
Microswitches (4 afl)
Omaron Licon switch; see figure 3. *
Muhi-core cabla
$\frac{1}{}$ metre, 10 -care. *
Grommets
1 to suit cabla diameter.
1 with dir. hole.

Mactano

1 screwed rod 2 in . long -a near equivalant 48A.
7 nuts.
1 farge washer $\frac{10}{2} \mathrm{in}$, ffiameter.
2 small washars.
Other bolts and nuts
bolts BBA $\frac{1}{2} \mathrm{in}$. long.

- nuts 8BA $\frac{1}{2}$ in. long.

4 bolts 6BA 1 in , long.
stick travel with a very positive selfcentring eflect provided by the return ation of the switches. All dintensions quesed are to suit the componems, specified and, if alternalive pasts are used, some alteration may be neeessary. It is recommended that Meccano nuts are used on the stick assembly, since the slim Meccano spanners make Ife adjustment easior in the confined space.

The large washer on the joyslick should be lin. diameler and a big Meccano washer will suffice bur, if available, one with slightly more thickness, say 2 mm ., would be better. Due to the rocking action of the stick, the washer slides up and down the face of the micsoswitch plunger as it operates.

To make the action smooth and avoid undue wear. the edges of the washer should be rounded as shown

4 nuts 6BA 1 in . long.
 Besephote

16 swg aluminium sheat $50 \times 50 \mathrm{~mm}$. Spacer tube
$3 / 16 \mathrm{in}$. bore brass or alloy tubing. 75 mm . lorg - see text.

Knob

Cap from tube of glue, tootypaste or sumilar.
'See Shopping list page.
ShudetilH Supply Co stocks the Bimboxes, microswitches and push 5 witch. Difficulty was tound with the 10 core cable. Cricklawood Electronics has 12. core at 80 pence ejach plus VAT and p\&p. per metre -- minimum.
Maplin sells the BA botts, nuts and washers in packs of 10 of each but they may be cheaper at electrical hardware stores. If Meccano is not available. Maplin has 48A screwed brass rod in 6 in . lengits. Bubble packs of assorted-sized grommets can be obtained from car accessory shops, DIY shops and the like.

in ligure four. That is best dosle using an electric dsill and a fithe file, then emery cloth, limishing with a very fine grade to obtain a polished finish. Hold the washet as shown in figure four, using an old bolt, as the theed may be damaged in the drill chuck.
Figure three shows the dintensions of the microswitches. If anollder type is to be used, ensure that it has a llat face to bolt to the box lid and that the terminals are clear of the other components. One other point to bear in mind is that if the length of the switeh is nuch greater than that shown, the corners of idjacent switches will foul - see plan view in tigure one. To overcome that, a bigger washer would be required and the dimensions, perhajts even of the box width, altered accordingly.

To achieve a crisp switch action with no sloppiness in the moventent, the position of the microswitches is critical and care should be taken with the marking and drilling. If the switches are lirst mounted on a piece of sctap Formica, it can then be used as a drilling template for both the box lid and the baseplate, thus ensuring good alignment.

First cut the Formica to make a square with 50 mm . sides, then locate the centre by drawing diagonals from corner to corner. After centre-punch-
ing, drill at $5 / 32 \mathrm{in}$. hole at that point. Using the screwed rod and nuts, lit the washer as shown in ligure five and clamp lhe switches as shown, so that the plungers are folliy-extended but lard against the washer. Miniature G-clamps wers used for this but bulldog paper-clips of the type of clolles. peg with a spring might sulitice, with care, to hold ench switch while the securing hole eentres are marked. Those holes should be made using a $3 / 32 \mathrm{in}$. driti. The fout corter holes should nex! be made in the templase, using a 7/64in. bit. The posisioning of them is not critical.

The baseplate is next made from 16 swg aluninium shet, Cut it to the same size as the template, $50 \mathrm{~mm} . \times 50 \mathrm{~mm}$. Holding that and the template together securely, the centre hole and four corner holes should be drilled through the baseplate. To avoid later confusion, a corsespondirge upper face corner of the template and baseplate should be marked suitably al this stage.

The dimensions of the box are shown in figure two. To locate the holes in the box lid, first rule a persit line down the centre, $Y-Y$ in figure two, and mark the centres for the stick and fire button 10 the dimensions shown. Make a $9 / 32 \mathrm{in}$. hole for the fire button and $w 5 / 32 \mathrm{in}$. hole on

the joystick centre. Fasten the template squarely to the box top, using a Meccano nut and bolt through the centre hoke, and nark the box top to correspond to the identity mark on the tentplate.

The four corner holes and eigh switch holes should then be drilled in the box top. Alter removing the template, upen-oul the centre hole using a $7 / 16 \mathrm{iz1}$ drill of round file, and countersink the 12 screwholes using a targe twist dritl if a countersink bit is nol available. That should be done by tarning the thol by hand.
The grommet to be fitted to the baseplate should have a hole about kin. diameter lo make the screwed rod a bight fit, Open-out the baseplate centre bole to suit antd fit the grommet. The larger-cable grommet should he fitted in a hole drilled centrally in one end face of the box. The box used for the prototype had internal slots for circuil boards and the projecting parls in the area tound the hole were cut off, using an old wood chisel, to make a flat seating for the grommet.

The four spacer lubes were made from $3 / 16 \mathrm{in}$. bore brass tubing. It may be obtained from model engineering shops but a nerfectly good altermative is to use the outer casing of a discarded Bic ballpoint pen. Cus the tubes as squarely as possibie to 17 mm . length.

The knob for the joystick is a plastic screw-cap from a lube of Britfix modet cement. That cap is ideal, as is has a centre core itto which a Meecano screw will just fit. Fill the hole with Araldite or some similar adhesive, screw in the rod, and leave until fuily sel. An open-type screw-cap can be used but more care is needed to ensure that the rod is held centrally white the adhesive sets. The rod should then be cut so that 31 mm . projects from the base of the cap.

The main assembly and adjustment is best done before any wiring is connected. First fit the push switch, then bolt the four microswitches to the box lid, using 8BA boits 1 in . long. Referring to figure one, assemble the parts as follows:

Screw two nuts on to the rod and,
after passing it through the hole in the box lid, filt the large washer and one more nut. Position nuts two and three so that the large washer lies centrally belween the microswitch plungers when there is a clearance of 2 mm. between the knob and the box lid. Screw down nut one and loke nut two back against it. Secure lle washer tightly with nut number three. Ilis two more nuts and one small washer and
slide on the baseplate with grommet fitted. Fit the last washer and two more nuts loosely; then, with the identification marks on the baseplate and box lid tined-up, fit the corner bolts, spacers and nuts and pult up tigh. Those bolts are 6BA Jin. long.
Position the joystick so that the large washer is near the top of the switch plunger faces as in ligure one, then tighten nuts four and five

Fizure 2.

Fitare 3.

against the grommet. Serew up nuts sis and sever, then back off nuts four and five to loek tight against six and seven. Some trial and error is necessary with this adjustment, so that the stick moventent is firm but at the same time snaps hack to the centre pusition when released, with no binding.

The assembly should ther be checked carefuily to ensure that all four switches operate every time, that the stick re-centres sharply when released, and that there is no chance of the washer slipping off the edge of the switeh plungers. A linal check is to screw the lid on to the box and make sure that the end of the stick does not fout the box when operated.

When satisfied, remove the bascplate, leaving nuts four and six locked in their correct positions. The withg can then be eonnected using 10 -core cable if is can be oblained. Only eight-core was available for the protolype, so two lengths of thin fiex were used it addition.

Jhe mieroswitehes specified have four terminals, Iwo for pust to make and two for push to break. Cleck with a meter or lamp and battery that the correct two are used for pusth to make. Conneel the five switshes 10 one end of the cable, then replace the baseplate and ituls and re-cherk the adjustment.

The other end of the cable should be passed through the box grommel and the lid fitted to the box, ensuring that no wiring is trapped. If the joystick is to be used with the interface described in the Ochober-November issue, it is suggested Ifal alter stripping back the insulation on the outer end of the cable the wire strands of each core are soldered together to form a solid tag. That will thake the frequent changing of terminals casier. The separate leads should be taped in groups of two and their functions labelled.

To finish the case, a square of thin card with a cut-out to clear the knob could be glued to the lid to cover the bult-heads round the knob.

- Figure 4.

firware 5.

Avoiding crashes caused by the refrigerator switch

Nothing is more annoying than losing a long program, once it has been typed-in, because of a power surge. This project by David Buckley overcomes that problem.

HOW MANY TIMES have you been working at your compuler when the lights have either flickered or the seligerafor switched on and the compater has crashed just before you have managed to save that extra long progratm you had typed-in? All that can bow be a thing of the pass.

This project will allow a $2 . \mathrm{X}-81$ or Spectrath to centinute working isurmally for anything lrom 20 mimules to an hour afiet the mains supply has tailed completely. The exact length of lime will depend on the number of add-ons to the maclsine and whetler or nol you use the printer.

Unfortunately, untit we can oblain the pocket TV you will still need mains power for the TV - either that or a porlable and 12 V car batlery. You could, however, sill SAVE: your program on tape without the TV hut you would have to guess when to switch off the recorder. It is best to err on the long side rather than to switch off hefore the program has bees completely SAVEd.

The project consists of seven nickel cadminm rechargeable $\wedge \wedge$ cells and a onc-Iransistor trickle charger, plus two diodes to change lrom mains 10 battery automatically when the mains is disconnected or goes down. It fïs between the power supply and the computer.

Figure two shows the circuil diagram. I.ED D4 is connected across the incoming power by RI and so indicates whether the mains supply is on. The voltage across a I.ED is more or less independent of the current through it and for a red LED is about 1.6 volts. That voltage is used to control transistor TR1 which supplies the charging current for B1. The transistor will turn on until the voltage across either R2 or R2 and R3 in
paraltel is cqual to the voltage across D4, tess the base emitter volage drop of the transistur.

The base emitter volage is about 0.8 V and so with only R 2 in circtuit about 5ma will flow and with SI -londed, putsing R3 in parallel with R2, absut $5(0 \mathrm{~mA}$ will flow. The currents are only approximate hecause the volange actoss the IE:D) and the base emitter voltage drop ol the transistor vary slightly with the currenf flowing.

The current thowing through 1)4 is governed by the Simelais juwer supply output voltage which is ahout 15 V with nos load dropping dows to ats low as 8 V when powering the computer plus several add-ons.

When the Staclair power supply is on the computer, cursent will Jow through 131 and 52 ; 122 in reversebiatsed duce to the difference in the input voltage and the battery vollage and so no current flows through it. Henee the batery is comaected to the supply only through TRI

When the Sixclais power supply is swathed off Vin drops to 0 votis, then D1 becomes reverse-biased and

D2 forward-biased, so current for the computer is supplied from the ballery through D2 and S2. Alt that happens very quickly so thefe is no interruption to the computer supply and it does nor trash.

D3 prevents the batiery pushing current the wrong way through TRI when Vin is at 0 V . D5 monitors the outpul veltage and so indicates whether the computer is supplied with power. Red and green I I:D) lit means that 1he compurer is remosing from the mains and the ballery is being iricklecharged. Only the green [.E:D lit means the computer is being supplied from 131. S2 is incorporated so that you can switch off the supply without having to pull ont any plags athd is taseful for re-setting the computer.

Nickel cadmium AA cells nommally have a capacity of about 500 mA a which muans they cian supply 50 mA for 10 hours. When elischarged at higher currents the capacity will be slighly less. Nickel caldmiam cells should be charged for 15 hours at lise 10 -hoser rate. which for $\triangle \mathrm{A}$ cells is 50 mA , so ro charge the batteries trom flat Si should be set 10.50 mA .

When eells are fully-charged they can be trickie-charged at the 100 -hour sate without harm and that keeps them fully-charged. For AA cells the t00-hour rate is $5 \mathrm{~m} \wedge$ and 50 , when the batteries are fully-charged, setting S1 105 mA will trickle-charge them at the 100 -hour rate.

Only seven AA cells are used be catse, in normal use, Vin should be greater than the battery vollage. Each A cell is about 1.2 V , which gives 8.4 for the battery.

In the prototype, DI and [D2 are IN4001 one-amp diodes but since the Spectrum can lake more than one amp it is better to use those specified.

As with all projects, you should

COMPONENTS LIST

D1, D2 1N5400 3Amp diodes*
D3 1 NS 1475 mA diode
D4 Red LED 0.2 im .
D5 Green LED 0.2in.
TR1 BC212
A1, R4 IK iwatt
A2 150 R
ค3 15 R
日1 7 off AA nickel cadmium
Box $100 \times 76 \times 41 \mathrm{~mm}$, - biack piattic |Ambi 21 -060441
Fett - 4 small stick- on.
Veroboard 36 -strip $\times 50$ hole
AA Cell halder 4 -cell holder, 2 olf.
Battory clips an fiying leads. 2 off.
3.5 mm - jack socket -- 意 off IMS components 10101
S1 Single-pole stide switch.
52 Single-pole mimiature saggio.
OC pawor sackot. Iall, B. 7 mm . innar. IAmbit 10001601
DC prower plug i off, 2.1 mm , inner |Ambit 10-00161|
Jack plug - 1 off. 3.5 mm .
-See fexf.

Higure 1. Holes in bat yramb.

obtain all the parts betore you start construction because some of them may be a slightly different size from those quoted in the articse.
The same consideration means that it is best to leave culting the vero tracks until after att the components are soldered in place. In that way it is casier to tell where a track break should go and if one of the components is of at unusual size you can move one of the track breaks to accommodate it, rather than finding you have broken the tracks where you wanted to solder a component.
The construction is straightforward. First chisel-olf all the board guides on what will be the front end of the box and chisel-ofl the central board guides at the other end. Figure one shows the layout of the front end of the box. 1 make no excuse for using merric and Imperial dimensions on the same drawing; $9 / 1$ bin. is easier to measure than 14.3 mm , and LED
holders are made to fil a $\downarrow \mathrm{in}$. hole 6.35 mm . - rather than a 6 mm . hole.

The Veroboard is cut from a 36 strip $\times 50$-hole piece, the offcut being used for the box divider. You will find the Veroboard just wide enough to fil against the back edge of the box and leave room at the from for the lip on the 3.5 mm . jack sockets. Cut holes in the corners to suit the serew-
Hinure 5. Box divider.

holes in the box corners. When the box is assembled the lid, which will be the bottom, will no longer fil flush but will leave a 1 mm . groove. The Veroboard will then be clamped firmly between the Iwo halves of the box.
Although the circuit layout is wide-ly-spaced, there is not much room on the front pathel for all the components and so if you are unsure of your abilities is would be better to use the next size of box.
Afice mounting all the components on the front patel, wire them, linking one end of D1 to the input sockets and the other to the circuil board via a flying lead. Similarly with D5 to the output socke1s. Note the polarity of the $2 \mathrm{X}-8 \mathrm{I}$ and Spectrum plugs; figure seven gives detaits.
Switch S2 should be wired so that on is down; that way if you catch the switch aceidentally you are unlikely 10 switch it to off.
When you have wired everything

Fixure 2. Circuil dlagram.

${ }^{\text {six }}{ }^{\text {gives details, }}$
together and checked everything insert the AA cells and the dummy cell into the folders and assembte into the box. The battery clips should be vertical al the back of the box with the battery wires running underneath them along what wilt be the top of the box. The battery holders are fold in place by the box divider, shown in figure five. lastead of titting that divider between the board guides, insett it just to the back of the front set of guides and it will hold the batteries in place.

Remember that charged nickel cadmium cells should be handled with caution. If you short one a good deal of current wilt flow and the cell may explode; it will at leas become very hot and probably be damaged intersally.

There are output sockets on the front and a switch S2 to guard against accidental damage when the unit is not connected to the computer.
not connected to the computer. If you
have a $\mathrm{ZX}-81$ you could omit the Spectrum-type power sockels and, similasly, if you have a Spectrum you could omit the jack sockets. If you use both, if you make up a lead with a Spectrum power connector on one end and a 3.5 mm . jack plug on the other, one way round it will plue into
the Spectrum and the other way it will plug into the ZX-8I.

If you do not mind taking the unit apart you could use it to charge seven or eight AA cells for other equipment, such as a tape recorder or radio.
 (

The good author's guide to explaining projects

IF YOU WISH to submis articies to Sinclair Projects we would appreciate it if you adhere to the following rules. Although they are not exclusive it would help us to evaluate projects if there is some clement of compatibility between different presentations.
It would also make it much casier for us to publish the articles without errors as there woutd be less chance of confusion about meanings. The main points to tote are:

- All manuscripts should be typed with double-tine spacing.
- Logic symbols should follow intertational standards.
- Circuil symbols should follow international standards.
- Circuit diagrams should have the values of the components shown, not a refcrence to a component table.
- Parts of integrated circuits shouid be designated with a note on the diagrams-IC5 - 74ISI4, for example.
- All circuits should be designed for construction using standard Veroboard. Any printed ciscuit board designs are likely to be returned for conversion. Submission of a project on a PCB wild not exclude future publication.
- Any constructional detail which is unusual or slightly complicated should be illastrated with simple hand-drawn diagrams, showing how it can be implemented.

For those who are familiar with British Standards logic symbols, they are shown here, along with the international symbols.

- Where projects are designed to plug into the rear of the computer they should be buith on the 36 strips $\times 50$ holes size of Verobeard with the board vertical and an extender card it the rear to allow other projects to be slacked. For Spectrum projects the connector should be central on the board with fous strips spare al each side and one row of holes spare bencath the connector. For ZX-81 projects

INTERNATIONAL

EXCLUSIVE OR

the connector should have two rows of holes spare bencath it with seven spare strips at the jight-hatnd side. Where that is impracticable, boards may be remote and conneeted by ribbon cable to a socket and extender card assembly.

- Components should be available to hobbyisis through the normal retail channets and where a component is not a widely-stocked item, sources should be given.

The audio-output effects on the Spectrum are limited and most solutions have difficulties. Robert Stafford provides a sophisticated answer.

AS ANY Spectrum owner witl know, the BEEP command is very linited as a methorl of producing sound effects, One melhod of producing better sound effects for a Basic program would be 10 write machine code subreytines but, ats the Specirum USR funciton provides no method af passing values lirem the Basic calling program to the machites sode subroutine, many suand effeets subroutines would be needed for one progratn.

That method could, therefore, be ruled out as wasteful of menory, both is the amount of code and the data statememts needed to hold it in tive Basic program.

There is, however, a method of passing values from a Basic program to a makhinc code subroutine, using a user-delined function - UDI ${ }^{i}$.

DEFADD, the system variable at address 23563 - 5COH hex - is described on page 173 of the Spectrum manual as "Address of argu. ments of user-delined function if one is being evaluated ", ses if the subroutine is called while a UDI is being evalualed, the values required will have been evaluated by the interpreter and slored in memory, at the address pointed to by DEFFADD.

The nex1 problem is how to load the numbers into the registers used by the machine code. Figure one shows how the numbers are stored in the compterer memory. X, Y and Z are the variable names used in the definition of the function, rather than the

[^2]names used when the funcion is catled. OE - - 14 decimal - is the cede which indicates a number and the next five bytes are the Spectrum representation of the value.

Assuming the value is an integer in the range -65536 to 6.5535 the value is in twos complement form in the third and fourth bytes of the number - see page 197 of the manual, para-
graph four. How can this be used to producce sound effects? Sonse idea of how the Spectrum produces sound would the uselal. It is done by sending a series of elicks to the speaker. The subroutine which does it is in ROM at address $949-03135$ hex. When is is called the content of register pair HL. controls the time between clicks and so controls the pitch. Register pair

there 1.

tsmel	Mmemanle	Deciomal	Hex	Cammena
	PLISHIX	221229	191) 1:5	Save PX to alvoid cmorupting BAStif oll return.
	[.15 18, (23563)	221421192	1313 2A (3B 5c.	
	(1) 13.11×14	22t 704	(1) 3 戍 (14)	
	1) (6, $1 \mathrm{X}+5$)	221785	(3) A15: 05	Gad no. if repeats
	INE ${ }^{\text {c }}$	12	(1)	
COOM'	Platis bx	197	CS	
	(t) $\mathrm{F},(1 \mathrm{X}, \mathrm{Th})$	221763	(i3) 4 (1) 24	
	[13) $(1) 8,37)$	2217837	(\%) ati 25	l.add no. of dectements
	INC ${ }^{\text {a }}$	12	$\mathrm{CH}^{(1)}$	
		22110213	(3) 66 (3)	Imilial pilch
	(1) 1 , (1) 12\%	221 +1412	(1) 絾 (\%	Inilial prich,
L.O()P2:	Plisil fr	197	c's	
	15) 1).(1X + 2t)	2218021	131) 566	Daralanm.
	[.I) $\mathrm{F} .(1 \mathrm{X}+\mathrm{zos)}$	221 \% 20	DII 51: 14	Phiralaion.
	PUSHIII.	229	I: 5	Save contents of iegimers
	PUSH 18	221229	DII 1:5	before calting subroutiac.
	CAIL. 419	2051813	C[3 8503	Call stabroutine
	$\mathrm{P}^{\text {P }}$ (1) ${ }^{\text {P }}$ IX	221225	Dil E-I	
	PGIP HI	225	EI	Relricte dala from stack.
	1.13 d. $11 \mathrm{X}+297$	2218629	130 5610	
	1.D F..(1X + 28)	2219428	(31) SE 1C	Dectease of patch.
	ADC HE, Dt	23740	fi) SA	Increase in HI. decreases pitch.
	POP PC	193	C1	
	IPJNZ LOOP 2	16229	10 ESS	
	DECC	13	OD	Another dectement?
	JR n/.-5	32251	20 FH	
	POP BC	193	CI	
	GJNZ LOOPI	16209	10 DI	
	DEC	13	OD	Anather repeat?
	Jk ne., 5	$32 \mathrm{2S1}$	20 FB	
	P()F IX	221225	DDE1	
	REE	201	C)	Relurs to Blasic.

DE contains the number of clicks or the duration of the note.

To produce interesting sound effects, what paramelers are required? Obviously the initial pitch and the sole duralion are required but that would be no better than the BEEP instruction. So two ohber parameters are needed - an increase or decrease in pitch logether with the number of times the increase or decrease is to be implemented. The fifth and final parameter is the number of times the total sound is to be repeated.

I decided to enter the parameters: into the function in the order number of repeats; initial pitch; duration of each note; decrease of piteh; number of decrements.

The subroutine will aceept negative values, so if you want the pitch to increase enter a negative decrease.

Figure two shows the machine code subroutine. Program one is the loader and also defines the function used to
call the subroutine. The code is relocatable but remember to change the defined function as well.

For 148 K Spectrum, change the addresses 325331065301.3253410 65302, and 32599 to 65367.

Program two demonstrates how
the subroutine can be used and a few of the sounds which can be produced.

The best way to discover and understand what can be done is to experiment but, before you do so, save the program, because it is possibie to set it going with sounds which could take hours to finish.
Programe \mathbf{t}.
gy9, Sterp
99\% FOR C $=32934$ TO 32599: READ A:POKE C,A:NFXT C
9997 DATA 221,229,221,42,11,92,221, $70,4,221,78,5,12,197,221,70,36,221$. 78,37,12,221,102,13,221,110,12,197. 221, 186,21,221.44,20.229,221.229. 205, 181, 3, 221,225, 225, 221, 86, 29, $221,94,28,217,20,193,16,224,13,32$, 251, 193, 16,205, 13,32,251,221. 225.201
9998 DEFFN M(R,F.D, $1, N)=$ USR 32534 9999 RETURN

Propran 2.

10	CLEAR 32533:G0SL1B 9\%9\%
20	FOR C $=1$ TO Sil.ETL. FW $\mathrm{M}(1,256,256,56,10)+\mathrm{FN}$
	M(1,4t8,256, - 16, 10):NEXT C
30	LET L. FN M $20.700,30,-4,8)$
40	t.ET I. FN M $(20,256,30,10,20)$
50	LET 1. .- FN M $(60,1000,10,300,2)$
60	LE:T I. $=$ FN M $120,256,2,-$: 25017
70	LLET L. . INN M $(1,256,5,1,512)$
80	1.FT 1 $1 .=$ FN M $(2,5000,2,3,15)$
90	GOTO 20

If you're a serious Sinclair user why don't you stop playing games?

Sinclaix projects of issues
please charge

Edge Connector signal allocation вотто SPECTRUM

TOP

qLL THE BEST

Hera's a sure-fire way of making cartain thie Christmas is packed full of fun for you and yoar frionds. We've searched for hrilliant new program sources throughout the U.K. and North America to find an exciting collection of new gomes - and businuss programs - many of which cannot be bought by mail order from any othar gourca! These arg our latest oxclushive offerings. Make sure you place your order now to recoive them in time for Christmes.
 delivery, quality and satisfaction [after all, we want you to come back for more!]
The Software Workshop, Yew Tree, Selborne, Hants GU34 3JP

GUAR
Order with complete not entirely satisfi your purchase re days and we will p

The Galaxy's FIRST evercomputercomic!

 Zooming into touchdown at WH Smiths, John Menzies and other good newsagents now. and every fortnight . . . only 40p.
Order your copy TODAY!

Bursting with great new comic strips . . . exciting stories . . . astounding facts . . . big prizes. . . competitions . . . fascinating quizzes . . . star personalities. And that's just the start of Britain's newest, brightest, most fun-packed comic evert

LOAD RUMMER

It's the only comic for the age of the computer it puts therest back with the dinosaurs!

[^0]: Editor Niget Clark Consaltant editer David Buckley Production wifitor Harold Mayes MBE News writer Suephen Adams Desiga Elaine Bishop Cover Stuart Briers Advertisement mawager John Ross Advertisenmend Executive Annette Burrows Fditorial assbiteal Dezi Epanninondu Minnaghag divector Terry Cartwright Chairman Richard Hease.
 Sinclair Projects is publiched it-wanthly by ECC Publications Lid. It is in mo way connected with siechair Research Lid.
 Telephone, alt departments: 0t-359 3525. If you would like to contribute to any of the Sincfoir Uiser group of publications please send programs, articles or ideas For hardware projects to Sinctair User and Projects, ECC Publications, 196-200 Balis Pond Road, London NI 4AQ. We pay £S0 per 1,000 words for each article usced.
 EID Copyright 1983 Sinclair Projects. ISSN 026-4/0449. Printed and typeset by Cradley Print PLC, Warley, W. Midlands. Distributed by Spotlight Magazisc Distribution Ltd, 1 Benwell Road, Holloway, London N7. 01-607 6411.

[^1]: Program 3.
 Test promran to product ganshol.
 10 ほ以T 111, 6: OUT 127,31
 20 OLT 111, 7: OUT 127,7
 30 OUT 111. 8: OUT 127.16
 40 OUT 111, 9: OUT 127,16
 50 OUT II1, 10: OUT 127,16
 60 OUT I1I, I2: OUT 127,20
 70 OLIT 111, 13: OUT 127,0

[^2]: Figere 1 .
 IX OE XX $x \mathrm{x} \times \mathrm{x} \times \mathrm{xx} \times \mathrm{x}$, Y OE Yy yY yy yy yy. Z etc . . I \{DEFADDi

